当前位置  >   首页  >   产品  >  正文

兰州8卡GPU服务器采购价格,携手共创美好的明天

价格:面议 2025-01-25 01:00:01 262次浏览

在分析之前,我们先看一下ASIC(Application Specific Integrated Circuit),中文全称是“专用集成电路”。这里特别强调“专用”,“专用”意味着针对单一项目来说会更加有竞争力。相对比,GPU(显卡)是通用计算处理芯片,所以在单一项目上来说“专用”肯定比“通用”更有竞争力。

硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。

●在算法过程中频繁的数据混洗使得NTT难以在计算集群中分布,无法并行计算,并且由于需要从大型数据集中加载和卸载数据,在硬件上运行时需要大量带宽。即使硬件操作很快,这可能也会导致速度变慢。例如,如果硬件芯片的内存为16GB或更少,那么在100GB的数据集上运行NTT将需要通过网络加载和卸载数据,这可能会大大降低操作速度。

综上来看,内存和带宽是限制证明生成的主要瓶颈。对于显卡来说,这里的内存指的是显存,并不是主板上的内存,主板上的内存主要是参与CPU的计算。当然目前有些芯片技术可以打通主板上的内存和显存,让内存为显存计算来用。

联系我们 一键拨号13922833160